The locust frontal ganglion: a central pattern generator network controlling foregut rhythmic motor patterns.
نویسندگان
چکیده
The frontal ganglion (FG) is part of the insect stomatogastric nervous system and is found in most insect orders. Previous work has shown that in the desert locust, Schistocerca gregaria, the FG constitutes a major source of innervation to the foregut. In an in vitro preparation, isolated from all descending and sensory inputs, the FG spontaneously generated rhythmic multi-unit bursts of action potentials that could be recorded from all its efferent nerves. The consistent endogenous FG rhythmic pattern indicates the presence of a central pattern generator network. We found the appearance of in vitro rhythmic activity to be strongly correlated with the physiological state of the donor locust. A robust pattern emerged only after a period of saline superfusion, if the locust had a very full foregut and crop, or if the animal was close to ecdysis. Accordingly, haemolymph collected at these stages inhibited an ongoing rhythmic pattern when applied onto the ganglion. We present this novel central pattern generating system as a basis for future work on the neural network characterisation and its role in generating and controlling behaviour.
منابع مشابه
The role of the frontal ganglion in locust feeding and moulting related behaviours.
In the desert locust, Schistocerca gregaria, the frontal ganglion (FG) plays a key role in control of foregut movements, and constitutes a source of innervation to the foregut dilator muscles. In this work we studied the generation and characteristics of FG motor outputs in two distinct and fundamental behaviours: feeding and moulting. The FG motor pattern was found to be complex, and strongly ...
متن کاملThe insect frontal ganglion and stomatogastric pattern generator networks.
Insect neural networks have been widely and successfully employed as model systems in the study of the neural basis of behavior. The insect frontal ganglion is a principal part of the stomatogastric nervous system and is found in most insect orders. The frontal ganglion constitutes a major source of innervation to foregut muscles and plays a key role in the control of foregut movements. Followi...
متن کاملThe Effect of Octopamine on the Locust Stomatogastric Nervous System
Octopamine (OA) is a prominent neuromodulator of invertebrate nervous systems, influencing multiple physiological processes. Among its many roles in insects are the initiation and maintenance of various rhythmic behaviors. Here, the neuromodulatory effects of OA on the components of the locust stomatogastric nervous system were studied, and one putative source of OA modulation of the system was...
متن کاملMotor pattern specification by dual descending pathways to a lobster rhythm-generating network.
In the European lobster Homarus gammarus, rhythmic masticatory movements of the three foregut gastric mill teeth are generated by antagonistic sets of striated muscles that are driven by a neural network in the stomatogastric ganglion. In vitro, this circuit can spontaneously generate a single (type I) motor program, unlike in vivo in which gastric mill patterns with different phase relationshi...
متن کاملRigidity and Flexibility: The Central Basis of Inter-Leg Coordination in the Locust
Many motor behaviors, and specifically locomotion, are the product of an intricate interplay between neuronal oscillators known as central pattern generators (CPGs), descending central commands, and sensory feedback loops. The relative contribution of each of these components to the final behavior determines the trade-off between fixed movements and those that are carefully adapted to the envir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 18 شماره
صفحات -
تاریخ انتشار 2002